Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available February 6, 2026
- 
            In chart-based programming environments for machine knitting, patterns are specified at a low level by placing operations on a grid. This highly manual workflow makes it challenging to iterate on design elements such as cables, colorwork, and texture. While vector-based abstractions for knitting design elements may facilitate higher-level manipulation, they often include interdependencies which require stitch-level reconciliation. To address this, we contribute a new way of specifying knits with blended vector and raster primitives. Our abstraction supports the design of interdependent elements like colorwork and texture. We have implemented our blended raster/vector specification in a direct manipulation design tool where primitives are layered and rasterized, allowing for simulation of the resulting knit structure and generation of machine instructions. Through examples, we show how our approach enables higher-level manipulation of various knitting techniques, including intarsia colorwork, short rows, and cables. Specifically, we show how our tool supports the design of complex patterns including origami pleat patterns and capacitive sensor patches.more » « less
- 
            Free, publicly-accessible full text available November 1, 2025
- 
            In this paper, we present a new computational pipeline for designing and fabricating 4D garments as knitwear that considers comfort during body movement. This is achieved by careful control of elasticity distribution to reduce uncomfortable pressure and unwanted sliding caused by body motion. We exploit the ability to knit patterns in different elastic levels by single-jersey jacquard (SJJ) with two yarns. We design the distribution of elasticity for a garment by physics-based computation, the optimized elasticity on the garment is then converted into instructions for a digital knitting machine by two algorithms proposed in this paper. Specifically, a graph-based algorithm is proposed to generate knittable stitch meshes that can accurately capture the 3D shape of a garment, and a tiling algorithm is employed to assign SJJ patterns on the stitch mesh to realize the designed distribution of elasticity. The effectiveness of our approach is verified on simulation results and on specimens physically fabricated by knitting machines.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
